skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Warner, Claire"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on the design and characterization of a compact microwave antenna for atomic and molecular physics experiments. The antenna is comprised of four loop antennas arranged in a cloverleaf shape, allowing for precise adjustment of polarization by tuning the relative phase of the loops. We optimize the antenna for left-circularly polarized microwaves at 3.5 GHz and characterize its near-field performance using ultracold NaCs molecules as a precise quantum sensor. Observing an unusually high Rabi frequency of 2π × 46.1(2) MHz, we extract an electric field amplitude of 33(2) V/cm at 22 mm distance from the antenna. The polarization ellipticity is 2.3(4)°, corresponding to a 24 dB suppression of right-circular polarization. The cloverleaf antenna is planar and provides large optical access, making it highly suitable for quantum control of atoms and molecules and potentially other quantum systems that operate in the microwave regime. 
    more » « less
  2. Abstract We present a study of two-photon pathways for the transfer of NaCs molecules to their rovibrational ground state. Starting from NaCs Feshbach molecules, we perform bound-bound excited state spectroscopy in the wavelength range from 900 nm to 940 nm, covering more than 30 vibrational states of the c 3 Σ + , b 3 Π , and B 1 Π electronic states. Analyzing the rotational substructure, we identify the highly mixed c 3 Σ 1 + | v = 22 b 3 Π 1 | v = 54 state as an efficient bridge for stimulated Raman adiabatic passage. We demonstrate transfer into the NaCs ground state with an efficiency of up to 88(4)%. Highly efficient transfer is critical for the realization of many-body quantum phases of strongly dipolar NaCs molecules and high fidelity detection of single molecules, for example, in spin physics experiments in optical lattices and quantum information experiments in optical tweezer arrays. 
    more » « less